
 Einstein-Gauss-Bonnet metrics: black holes, black strings and a staticity theorem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP10(2009)037

(http://iopscience.iop.org/1126-6708/2009/10/037)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:38

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/10
http://iopscience.iop.org/1126-6708/2009/10/037/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
0
(
2
0
0
9
)
0
3
7

Published by IOP Publishing for SISSA

Received: July 6, 2009

Accepted: September 1, 2009

Published: October 14, 2009

Einstein-Gauss-Bonnet metrics: black holes, black

strings and a staticity theorem

C. Bogdanos,a C. Charmousis,a,b B. Goutérauxa and R. Zegersa,c
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tions in a large class of space and time-dependent warped geometries. Several distinct
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dependent solutions and black holes with exotic horizons. Among these, some are shown to

verify a Birkhoff type staticity theorem, although here, the usual assumption of maximal

symmetry on the horizon is relaxed, allowing exotic horizon geometries. We provide explicit

examples of such static exotic black holes, including ones whose horizon geometry is that

of a Bergman space. We find that the situation is very different from higher-dimensional

general relativity, where Einstein spaces are admissible black hole horizons and the asso-

ciated black hole potential is not even affected. In Einstein-Gauss-Bonnet theory, on the

contrary, the non-trivial Weyl tensor of such exotic horizons is exposed to the bulk dynam-

ics through the higher order Gauss-Bonnet term, severely constraining the allowed horizon

geometries and adding a novel charge-like parameter to the black hole potential. The latter

is related to the Euler characteristic of the four-dimensional horizon and provides, in some

cases, additional black hole horizons.
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1 Introduction

Gravitational theories in more than four spacetime dimensions have gained a lot of attention

over the past three decades. Although these ideas go back to the early days of General

Relativity, with the introduction of Kaluza-Klein theories [1, 2], it was the advent of String

Theory that revived the notion of higher-dimensional spacetimes as not just an interesting

theoretical possibility, but as a necessary ingredient of a unified picture of elementary

interactions. Not surprisingly, the mere extension of General Relativity by considering extra

spacelike dimensions can immediately lead to very non-trivial alterations in the theory. The

inclusion of additional structure in the gravitational action, such as Gauss-Bonnet and

Lovelock [3] terms, or brane-like components [4–10] increases even further the diversity

of the models available and gives rise to a rich phenomenology, one which is actively

investigated these days. The long standing problems in gravity, such as gravitational

collapse, the initial singularity conditions, a number of open cosmological problems such

as dark matter and accelerated expansion of the universe, as well as the elusive quantum

theory have accumulated over the years to a general consensus which casts considerable

doubt on General Relativity as the final word on gravity in a number of different regimes.
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This acts as a further motivation to give extra-dimensional theories serious consideration

as possible routes to a more complete description of this fundamental interaction.

Gauss-Bonnet extensions of General Relativity (GR) have been motivated from a

string-theoretical point of view as a version of higher-dimensional gravity, since this sort

of modification also appears in low energy effective actions in this context [11] (see also

the points raised in [12]). The same gravitational term is also present in the case of Love-

lock theory (for recent reviews see [13, 14]), which provides a unique and unambiguous

classical extension of GR in arbitrary dimensions. The theory of such extended gravity

theories has been extensively studied (see for example [15–24]), especially in conjunction

with braneworlds (see for example [25–30]). Studies of the cosmology of these setups have

also provided insight into the possible relevance of the Gauss-Bonnet gravitational term to

4-dimensional inflation and the accelerated cosmic expansion (see for example [31–35]).

It is well-known that Birkhoff’s theorem, when considered in the context of higher-

dimensional GR (n > 4), remains valid and is in fact amplified in terms of its general-

ity [36, 37]. The original Birkhoff theorem states that, in four dimensions, any spherically

symmetric solution to Einstein’s equations in the vacuum is necessarily locally static, a

very important result with many applications when considering the gravitational field of

ordinary stars. It is worth mentioning that, in four dimensions, there also exists a form

of reciprocal to Birkhoff’s theorem. First, the horizon of an asymptotically flat station-

ary black hole must have the topology of a 2-sphere [38]. Moreover, under quite general

assumptions, Israel’s theorem states that every static black hole whose horizon has the

topology of a 2-sphere is isometric to the Schwarzschild solution [39, 40]. In other words,

not only is its horizon topologically a 2-sphere but it also has the metric of the round

2-sphere. In higher dimensions, these well established four-dimensional uniqueness results

just fail: on one hand, because the topology of the horizon is less restricted [41–43]; on the

other hand, because, even if one insists on having a particular horizon topology, the actual

geometry on this horizon is much less constrained. This leaves room for Birkhoff’s theorem

to remain valid not only for a constant curvature horizon, but also for horizons which belong

to the more general class of Einstein spaces. Substituting the usual (n − 2)-sphere of the

horizon geometry (in the case of an n-dimensional spacetime) with an (n− 2)-dimensional

Einstein manifold will not alter the black hole potential and the previous solution remains

valid and static. Spherical symmetry is no longer a prerequisite for staticity. The struc-

ture of the space transverse to the horizon is in this way not affected by the details of

the internal geometry, as long as the latter continues to be an Einstein space. Such exotic

black holes are accompanied by classical instabilities [36, 37] similar to those of the black

string [44]. In fact black string metrics can be Wick rotated to a subclass of metrics with

exotic horizons. The exotic horizon is nothing but the Euclidean version of 4 dimensional

Schwarzschild. Therefore one could entertain the possibility that the additional unphysical

exotic black holes are just an artifact of not considering the full classical gravity theory in

higher dimensions. In fact it was shown by Lovelock in the early 70’s [3] that in higher than

4 dimensions specific higher order gravity terms have to be added to the usual Einstein

Hilbert action in order to preserve the unique properties of general relativity in 4 dimen-

sions (for a discussion and the geometric properties see [30]). These higher order gravity
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terms, which include the Ricci and Gauss-Bonnet scalar are dimensionally extended Euler

Poincaré densities of 2, 4 dimensional and so forth manifolds.

In fact the situation is very different when higher order curvature terms such as the

Gauss-Bonnet term, are introduced. As was recently shown in [45], the presence of the

Gauss-Bonnet term can be quite restrictive for the geometry of the horizon of a black hole,

compared to ordinary GR results (see also [46] ). Intuitively, this can be understood as

follows: in GR, Einstein’s equations only involve the Ricci tensor, whereas the Einstein-

Gauss-Bonnet field equations expose the entire Riemann curvature tensor to the dynamics.

In [45], the authors considered a static spacetime with generic Einstein space as an n − 2

dimensional subspace and then analysed the field equations. They found that the rank two

tensor CacdeCbcde, where Cabcd is the Weyl tensor, is representative of the new solutions

and only horizons satisfying the appropriate conditions on CacdeCbcde are allowed.

In this paper, we investigate an extension of Birkhoff’s theorem to the six-dimensional

Einstein-Gauss-Bonnet theory,1 allowing arbitrary 4-dimensional horizon geometries and of

course time dependence in the metric. In particular, we show that Birkhoff’s theorem holds

quite generically though the theory is far more complex. Although the allowed horizon ge-

ometries are far more restricted than in dimensionally extended GR, in agreement with [45],

we shall see that they need not be maximally symmetric. Namely, it will suffice that they be

Einstein spaces and that the invariant built out by squaring their Weyl tensor be a constant.

We would like to stress that the 6-dimensional case is very special: in 5 dimensions, the

Weyl tensor is identically zero, whereas in more than 6 dimensions, Lovelock theory dictates

the presence of a higher order gravity term in the action. Furthermore, in 6 dimensions the

4-dimensional horizon geometry allows for a non trivial 4-dimensional Gauss-Bonnet term

which when integrated over the horizon surface gives a topological charge, the 4-dimensional

Euler-Poincaré characteristic.

The paper is organized as follows. We first derive the general Einstein-Gauss-Bonnet

field equations for the class of metrics considered throughout the paper. We then system-

atically solve these equations. Just as in the Lovelock extension of Birkhoff’s theorem [49],

we encounter two distinct classes of solutions, plus a third particular one (see also [50] for

the classification of the static metrics). The first of them comes along with a fine-tuning of

the parameters of the theory, which corresponds in our case to the Born-Infeld limit, and

leads to an underdetermined system of equations. The solutions of this branch are not nec-

essarily static. From the second branch we obtain a set of static solutions including black

hole solutions, where the horizon is an Einstein space of constant Ricci scalar and constant

CacdeCbcde, and generalizations of the Nariai solution. We also encounter a branch of solu-

tions obeying the staticity theorem but with non-Einstein space horizons. The third class

of solutions is unwarped, and contains both fine-tuned and non-fine-tuned solutions, some

of them static, with or without Einstein horizon. We then present a number of explicit

examples of such horizon manifolds, for instance products of 2-spheres and the Bergman

metric, as well as horizons with a possible relevance for codimension two braneworlds.

1Birkhoff’s theorem for Einstein-Gauss-Bonnet theorem was demonstrated by Wiltshire [47]. Here, when

refering to this theorem we will be using the slightly generalised version discussed in [48].
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2 Action and conventions

We begin by considering the Einstein-Gauss-Bonnet action with a cosmological constant

in six dimensions

S(6) =
M (6)4

2

∫

d6x

√

−g(6)
[

R− 2Λ + αĜ
]

, (2.1)

where M (6) is the fundamental mass scale in six-dimensional spacetime, Ĝ the Gauss-

Bonnet density defined as

Ĝ = RABCDR
ADCB − 4RABR

AB +R2 , (2.2)

and Λ the cosmological constant. Using these conventions we can vary the action with

respect to the metric to derive the field equations

EAB = GAB + ΛgAB + αHAB = 0 , (2.3)

where GAB stands for the Einstein tensor. Uppercase indices refer to six-dimensional

coordinates. We have also introduced the Lanczos or Gauss-Bonnet tensor,

HAB =
gAB
2
Ĝ− 2RRAB + 4RACR

C
B + 4RCDR

C D
A B − 2RACDER

CDE
B . (2.4)

Interestingly, the latter can also be written using the following rank four tensor

PABCD
.
= RABCD+RBCgAD−RBDgAC−RACgBD+RADgBC +

1

2
RgACgBD− 1

2
RgBCgAD,

(2.5)

as

HAB = PACDERB
CDE − gAB

2
Ĝ . (2.6)

The tensor PABCD has several interesting properties: it is divergence free since the Bianchi

identities of the curvature tensor are simply ∇DPABCD = 0. It has also has the same index

symmetries as the Riemann curvature tensor. Tracing two of its indices yields PBACB =

GAC , which in turn yields the divergence free property of the Einstein tensor. In rather

loose terms, one can say that P is the curvature tensor associated to the Einstein tensor,

just as the Ricci tensor is associated to the Riemann tensor. In four dimensions, this

statement is far more precise since PABCD coincides with the double dual (i.e. for each pair

of indices) of the Riemann tensor ⋆RCD⋆AB
.
= −1

2ǫ
ABMN RMN

RS 1
2ǫRSCD, where ǫABCD

is the rank 4 Levi-Civita tensor. In 4 dimensions we have HAB = 0 thus picking up the

following Lovelock identity (for extensions see [51]),

PACDERB
CDE =

gAB
2
Ĝ (2.7)

which will be useful to us later on.

In order to proceed with the solution of the equations, we are now going to choose

an appropriate symmetry for the metric. We distinguish between the transverse 2-space,

which also carries the timelike coordinate t, and the internal 4-space, which is going to

represent the possible horizon line element of the six-dimensional black hole. The metric
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of the internal space hµν is an arbitrary metric of the internal coordinates xµ, µ = 0, 1, 2, 3

but we are imposing that the internal and transerse spaces are orthogonal to each other.

This is an additional hypothesis we have to make since hµν is not a homogeneous metric

and because our six-dimensional space is not an Einstein space (in GR such an orthogonal

foliation is possible for an Einstein metric). At a loss of a better name we will call this a

warped metric Ansatz. Guided by the analogous procedure of analyzing Birkhoff’s theorem

we write the metric as

ds2 = e2ν(t,z)B (t, z)−3/4 (−dt2 + dz2
)

+B (t, z)1/2 h(4)
µν (x) dxµdxν . (2.8)

Lowercase greek indices correspond to internal coordinates of the 4-space. We then switch

the coordinates of the transverse space to light-cone coordinates,

u =
t− z√

2
, v =

t+ z√
2
. (2.9)

in terms of which the metric reads

ds2 = −2e2ν(u,v)B (u, v)−3/4 dudv +B (u, v)1/2 h(4)
µν (x) dxµdxν . (2.10)

Using the above prescription, we are now able to write down the equations of motion. The

uu and υυ equations yield

Euu =
2ν,uB,u −B,uu

B

[

1 + α

(

B−1/2R(4) +
3

2
e−2νB−5/4B,uB,v

)]

, (2.11)

Evv =
2ν,vB,v −B,vv

B

[

1 + α

(

B−1/2R(4) +
3

2
e−2νB−5/4B,uB,v

)]

. (2.12)

The off-diagonal equation reads

Euv =
B,uv
B

− Λe2νB−3/4 +
α

2
e2νB−7/4Ĝ(4)

+R(4)

[

1

2
e2νB−5/4 − αB−3/2

(

1

2

B,uB,v
B

−B,uv

)]

+αe−2νB−5/4

[

−15

16

(

B,uB,v
B

)2

+
3

2

B,uB,v
B

B,uv

]

. (2.13)

We also have the µν equations, which can be brought into the form

Eµν = G(4)
µν − e−2νB1/4

(

3

4
B,uv + 2Bν,uv

)

h(4)
µν + ΛB1/2h(4)

µν

+
3

2
αe−4ν (B,uu − 2ν,uB,u) (B,vv − 2ν,vB,v)h

(4)
µν

−αe−4ν

[

45

32

(

B,uB,v
B

)2

− 21

8

B,uB,v
B

B,uv +
3

2
B2
,uv + 3B,uB,vν,uv

]

h(4)
µν

−αe−2νB−1/4

(

3

4

B,uB,v
B

− 1

2
B,uv + 4Bν,uv

)

(

R(4)h(4)
µν − 2R(4)

µν

)

. (2.14)

– 5 –
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In this way, we have decomposed the gravitational equations into expressions depend-

ing on either transverse space quantities, or internal coordinates. The integrability condi-

tions, [52], are unchanged compared to the original version of the theorem [48], and this will

permit us to obtain the staticity conditions. Furthermore, the internal geometry of the hori-

zon only enters these equations through expressions involving the four-dimensional Gauss-

Bonnet scalar density, the Ricci tensor and scalar of the internal metric hµν . Note the ab-

sence ofH
(4)
µν terms due to the fact that internal space is 4-dimensional. Note also that terms

proportional to the Gauss-Bonnet coupling constant are the ones responsible for the appear-

ance of R(4) and R
(4)
µν and in this way, the Gauss-Bonnet term exposes the internal geometry

to the transverse space dynamics in a non-trivial way, something which would obviously

not occur in ordinary General Relativity. As we will see, this decomposition imposes severe

constraints on the allowed form of the horizon geometry in order to get a spacetime solution.

3 Exact solutions and staticity

The uu and vv equations (2.11), (2.12) can lead to three different classes of solutions,

depending on wether the first or second factor is zero (an additional class will emerge for

constant B). The corresponding solutions have distinct characteristics and are thus treated

separately in what follows. Class I and II are both warped solutions whereas for Class III

we have B = const..

3.1 Class-I

This class corresponds to solutions which can have, in general, time dependence and,

hence, for which a Birkhoff-type theorem does not hold. As we shall soon see, all of

them imply 5 + 12αΛ = 0. The latter corresponds to the so-called Born-Infeld limit,

an even-dimensional counterpart of the well-known odd-dimensional Chern-Simons limit

in which the Lovelock action can be written as a Chern-Simons action for some (a)dS

connection — see e.g. [53]. In the Born-Infeld limit, the Lovelock action can be written as

a Born-Infeld action for some curvature 2-form, hence its name. For the class of space-time

metrics under consideration here, it typically leads to an underdetermined set of equations

and the unconstrained components of the metric subsequently allow for a possible time-

dependence. This is reminiscent of class-I Lovelock solutions with spherical, hyperbolic

or planar symmetry [48, 49] and is expectedly related to perturbative strong coupling

problems as in the case of Chern-Simons gravity [54].

Setting the second factor of the (uu) and (vv) equations (2.11) equal to zero leads to

the common equation

1 + αB−1/2R(4) +
3

2
αe−2νB−5/4B,uB,v = 0 , (3.1)

from which we can solve for the function ν(u, v) in terms of B(u, v), according to

ν (u, v) =
1

2
ln

(

−3α

2

B,uB,v

B5/4
(

1 + αB−1/2R(4)
)

)

. (3.2)

– 6 –
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Note that this equation immediately constrains the Ricci scalar R(4) of the internal space to

be a constant. We are thus required to consider only horizon geometries of constant scalar

curvature as candidate solutions. Substituting the above expression for ν(u, v) into (2.13)

yields the two additional constraints,

5 + 12αΛ = 0, Ĝ(4) =
1

6
R(4)2 . (3.3)

The second of these tells us that the Gauss-Bonnet scalar Ĝ is also constant. Taking the

trace of (2.14) with hµν and performing the same substitution we end up with the equation

E ≡ Eµµ =
5 + 12αΛ

3α
= 0 , (3.4)

Finally, we can rewrite the complete equation (2.14) in terms of the trace as

Eµν =
1

4
B1/2Eh(4)

µν

+

(

R(4)
µν − 1

4
R(4)h(4)

µν

)[

1 + 2αe−2νB−1/4

(

3

4

B,uB,v
B

− 1

2
B,uv + 4Bν,uv

)]

. (3.5)

Given the above mentioned constraints, the first term vanishes because it is proportional

to E . The second term can vanish in one of two ways giving us two distinct cases of Class-I

solutions both verifying (3.2) and (3.3). We can either have

R(4)
µν =

1

4
R(4)h(4)

µν , (3.6)

which is the definition of a four-dimensional Einstein space.2 Coupled with the condition

Ĝ(4) = 1
6

[

R(4)
]2

, this leads to

C
(4)
αβµνC

(4)αβµν = 0 , (3.7)

i.e. the square of the Weyl tensor of the internal space must be zero. We then have a

constant curvature space.3 Since (2.14) is in this way automatically satisfied, there is no

dynamical equation defining the function B(u, v) and thus the system of field equations

becomes underdetermined. This is a typical feature of the Class-I solutions which have

been discussed in [48].

If, on the contrary, we demand the second factor in the second term of equation (3.5)

to be zero, the requirement for a four-dimensional Einstein space on the horizon of the

black hole can be relaxed. Instead, we get a third order partial differential equation for

B(u, v), which reads

(

1+αB−1/2R(4)
)2
(

B2
,uB,vvB,uv+B

2
,vB,uuB,uv−B2

,uB,vB,uvv−B2
,vB,uB,uuv

)

+
B,uv
B

B2
,uB

2
,v

[

3

2
+

5

2
αB−1/2R(4) +

(

αB−1/2R(4)
)2
]

−
B3
,uB

3
,v

B2

[

5

4
+

17

8
αB−1/2R(4) +

9

8

(

αB−1/2R(4)
)2
]

= 0 . (3.8)

2In general, a d-dimensional Einstein space obeys Rµν = 1
d
Rhµν where R is a constant.

3A constant curvature space is defined by Rµνρλ = 1
d(d−1)

R (hµρhνλ − hµλ − hνρ) where R is a constant.

– 7 –
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This equation can in principle be solved for B(u, v), again for an internal space of constant

Ricci scalar and given the constraints (3.3). Note that the horizon is not necessarily an

Einstein space but instead we have the 4-dimensional geometrical constraint,

C(4)2 + 2R(4)
µν

2
=

1

2
R(4)2 = constant . (3.9)

We now summarize the results for the Class-I solutions. We distinguish two subclasses,

both requiring the fine-tuning condition 5+12αΛ = 0, which is the six-dimensional version

of the Born-Infeld gravity condition, and a constant Ricci scalar R(4):

• Class-Ia: we have an underdetermined system for the transverse dimension geometry

(free function B and (3.2)) and an internal space which is an Einstein space of zero

Weyl squared curvature, that is a constant curvature space,

• Class-Ib: A completely determined system of transverse dimensions (3.2), (3.8) with

an internal geometry obeying (3.3) (non-zero Weyl curvature).

The former of the two subclasses is certainly incompatible with Birkhoff’s theorem as

demonstrated in [48], whereas for the latter we could not find the general solution to (3.8).

3.2 Class-II

Class-II solutions are obtained by demanding, instead of (3.1), that

{

2ν,uB,u −B,uu = 0

2ν,vB,v −B,vv = 0

These integrability conditions are the same as in the case of ordinary GR. We will again

assume that B is not constant.

Equation (3.2) implies that

e2ν = B,uf(v) = B,vg(u) , (3.10)

for some functions f and g, which, in turn, yields B = B(U + V ), with U = U(u) and

V = V (v). In this way, under the change of coordinates

U =
z̄ − t̄√

2
, V =

z̄ + t̄√
2
, (3.11)

the function B becomes independent of time and Birkhoff’s theorem holds. Additionally,

rewriting (3.10), ν(u, v) is now defined as

e2ν = B′U ′V ′ , (3.12)

where primes denote differentiation with respect to the single argument of each function.

Under (3.11), we get e2ν = ∂z̄B. The uu and vv equations thus determine the staticity of

the metric, as well as the relation between B and ν. We can then determine B(u, v), or

– 8 –
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equivalently the form of the black hole potential, from the uv equation. Taking advantage

of the already deduced staticity, we can express this as

B′′ +
1

2
R(4)B−1/4B′ − 15

16
αB−9/4B′3 +

3

2
αB−5/4B′′B′

− 1

2
αR(4)B−3/2B′2 + αB−1/2R(4)B′′ +

1

2
αB−3/4B′Ĝ(4) − ΛB1/4B′ = 0 . (3.13)

Inspection of the above expression leads to the conclusion that a priori only solutions with

a constant Ricci scalar and Gauss-Bonnet density for the internal space are permissible.

However, this is not always the case, we have to be cautious of special cases. Upon inte-

gration, this leads to a quadratic equation for B′. We can then solve for B′ and determine

the black hole potential V

ds2 = −V (r) dt2 +
dr2

V (r)
+ r2h(4)

µν (x) dxµdxν , (3.14)

using the change of variables r = B1/4. The corresponding potential turns out to be

V (r) =
R(4)

12
+

r2

12α









1 ±

√

√

√

√

1 +
12αΛ

5
+
α2
(

R(4)2 − 6Ĝ(4)
)

r4
+ 24

αM

r5









, (3.15)

where M is an integration constant independent of x, related to the mass of the six-

dimensional black hole.4

We now turn to the µν equations (2.14). Taking the trace with respect to the internal

metric leads to the expression

E = 4Λ −R(4)B−1/2 −B−1/4

(

3
B′′

B′
+ 4

BB′′

B′2
− 4

BB′′2

B′3

)

−αB−1/2

(

45

8

B′2

B2
− 21

2

B′′

B
+ 6

B′′′

B′

)

−αR(4)B−3/4

(

3

2

B′

B
− B′′

B′
+ 4

BB′′′

B′2
− 4

BB′′2

B′3

)

= 0 .

It can be shown that this equation can be rewritten as −∂v
(

B3/4

B′ Euv
)

= 0, which is

identically satisfied as a Bianchi identity.

The µν equation then gives,

0 =

(

R(4)
µν − 1

4
R(4)hµν

)[

1 + αB−1/4

(

3

2

B′

B
− B′′

B′
+ 8

BB′′′

B′2
− 8

BB′′2

B′3

)]

(3.16)

Therefore, we have two distinct cases, depending on which of the two factors of (3.16)

cancels.
4We note that the Gauss-Bonnet coupling constant has dimensions mass−2, k of mass and κ is dimen-

sionless. The latter is justified by the fact that the internal metric h
(4)
µν dxµdxν is multiplied by r2, so the

internal coordinates must be of an angular nature and carry no dimension. Consequently, derivatives with

respect to them as well as the Riemmann, Ricci and Weyl tensor are dimensionless.
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For the first case the horizon has to be an Einstein space with constant scalar curvature,

defined by R
(4)
µν = 3κhµν . This is similar to ordinary GR. However given that Ĝ(4) is also

constant we have that CαβγµCαβγµ = 4Θ where Θ is a positive constant. This is the

solution obtained by [45]. Now using the properties of the Pµναβ tensor and (2.7) we

immediately get,

CαβγµCαβγν = Θδµν (3.17)

This is a supplementary condition imposed on the usual Einstein space condition for the

horizon. Both have a similarity in that we ask for (part of) a curvature tensor to be anal-

ogous to the spacetime metric. The main difference being that the curvature tensor in

question here is the Weyl tensor and, given its symmetries, it is actually its square which is

analogous to the spacetime metric. Clearly horizons with Θ 6= 0 will not be homogeneous

spaces and not even asymptotically so in the non-compact cases. We will see in a forthcom-

ing section that they can be related to squashed sphere geometries. Another interesting

point is that the Gauss-Bonnet scalar, whose spacetime integral is the Euler characteristic

of the horizon, has to be constant. In other words the Euler Poincaré characteristic of the

horizon is in this case simply the volume integral of the horizon. In this sense Θ could be

thought of as a topological charge. The Gauss-Bonnet scalar of the internal space then

reads Ĝ(4) = 4Θ + 24κ2 and the potential [45]

V (r) = κ+
r2

12α

(

1 ±
√

1 +
12

5
αΛ − 24

α2Θ

r4
+ 24

αM

r5

)

. (3.18)

For Θ = 0, we obtain the well known black holes first discussed by Boulware and Deser

(see [15, 55]).

Alternatively (3.16) tells us that we can have a horizon which is potentially not Ein-

stein, iff B satisfies

1 + αB−1/4

(

3

2

B′

B
− B′′

B′
+ 8

BB′′′

B′2
− 8

BB′′2

B′3

)

= 0 . (3.19)

Note that in this case we have two equations for B and the system is overdetermined.

Integrating (3.19), we obtain the following potential

Ṽ (r) =
r2

12α
+

ρ

2α
− µ

2αr
, (3.20)

where µ and ρ are integration constants. Comparing with (3.15), we make the following

identifications:

5 + 12αΛ = 0, µ = 0, M = 0. (3.21)

and

ρ =
R(4)

6
± 1

6

√

R(4)2 − 6Ĝ(4) (3.22)

The potential (3.15) reduces to

V (r) =
ρ

2
+

r2

12α
. (3.23)
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This corresponds to a massless solution resembling adS or dS space, with a curvature radius

dependent on both the internal geometry and the Gauss-Bonnet coupling. The solution

is defined only for
[

R(4)
]2 − 6Ĝ(4) > 0. Equation (3.22) is now a geometric equation

constraining the 4-dimensional horizon geometry. Indeed R(4) and G(4) no longer have to

be constant individually. In section 5.3.1, by Wick rotating these solutions to Lorentzian

internal sections, we shall construct Born-Infeld black string solutions.

Thus, Class-II contains the folllowing solutions:

• Class-IIa: The solution is locally static (3.14), and the horizon is an Einstein space

with Θ ≥ 0.

• Class-IIb: The solution is again locally static with potential given by (3.23), but the

horizon is constrained by (3.22) and the BI condition is imposed.

Thus, both subclasses of Class-II obey a local staticity theorem.

3.3 Class-III

The remaining Class of solutions is given by B =: β4 = constant 6= 0. In this case,

the metric is no longer warped in the internal directions and the Einstein-Gauss-Bonnet

equations (2.13), (2.14) reduce to

0 = −2Λβ4 +R(4)β2 + αĜ(4) (3.24)

G(4)
µν + Λβ2h(4)

µν = 2β3ν,uve
−2ν

(

β2h(4)
µν − 4αG(4)

µν

)

. (3.25)

It follows from contracting the second of the above equations, (3.25), with the metric hµν

that,

4Λβ2 −R(4) = 8β3ν,uve
−2ν

(

β2 + αR(4)
)

. (3.26)

If R(4) = −β2/α, then we have the fine-tuning relation 1 + 4Λα = 0, (3.24) implies that

Ĝ(4) = β4/(2α2) and (3.25) can be rewritten as
(

G(4)
µν +

1

4
R(4)h(4)

µν

)(

2β3

Λ
ν,uve

−2ν − 1

)

= 0 , (3.27)

which implies that either h
(4)
µν is Einstein and ν is not determined (and thus possibly time-

dependent), or h
(4)
µν is not necessarily Einstein and ν obeys the Liouville equation

ν,uv =
Λ

2β3
e2ν . (3.28)

The latter can be solved exactly, yielding

e2ν =
2β3

Λ

U ′V ′

(U + V )2
, (3.29)

for some functions U = U(u) and V = V (v). Now we can perform a change of coordinates

of the form (3.11), under which ν transforms in such a way that eventually

e2ν =
2β3

Λ

1

z̄2
. (3.30)
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The metric now obviously admits the locally time-like Killing vector ∂t̄ and Birkhoff’s

theorem holds in this case. Now, if on the contrary R(4) 6= −β2/α, (3.26) can be rewritten

in the separable form

4Λβ2 −R(4)

β2 + αR(4)
= 8β3ν,uve

−2ν = constant . (3.31)

Provided that 1 + 4Λα 6= 0, we can have R(4) = 4Λβ2, which implies ν,uv = 0 and

2ν = lnU ′ + lnV ′ for some functions U = U(u) and V = V (v). Now we can perform a

change of coordinates of the form (3.11) so that, in the end, e2ν = 1 and the metric admits

the Killing vector ∂t̄. It also follows from (3.24) that Ĝ(4) = −2Λβ4/α and from (3.25)

that h
(4)
µν is Einstein. Otherwise, for non-vanishing values of the constant in (3.31), say λ,

ν obeys once again the Liouville equation

ν,uv =
λ

8β3
e2ν . (3.32)

After a change of coordinates of the form of (3.11), we therefore have

e2ν =
8β3

λ

1

z̄2
, (3.33)

and the metric admits the Killing vector ∂t̄. If λ = 4Λ = −1/α, (3.25) is trivially satisfied

and the only constraint on h
(4)
µν comes from (3.24). Otherwise, it follows from (3.25) that

h
(4)
µν is Einstein and from (3.24) that Ĝ(4) is a constant.

Wick rotating the solutions obtained in the former case, allows to construct axially

symmetric black string type solutions, provided we impose a certain amount of symmetry

to the internal manifold. Some static examples of this subclass of solutions have already

been studied (see [21, 22] and references therein). We will briefly study an example in

section 5.3.2. It is worth noting that, once we allow for lesser symmetry, the scalar equa-

tion (3.24) does not suffice to determine the full horizon metric.

The solutions contained in Class-III are the following:

• Class-IIIa: 1 + 4αΛ = 0, R(4), Ĝ(4) are constant, and the horizon is Einstein.

• Class-IIIb: 1 + 4αΛ 6= 0, the transverse space is of constant curvature, and (3.31) is

satisfied, and the horizon is Einstein.

• Class-IIIc: 1+4αΛ = 0, the transverse space is of constant curvature, and the horizon

satisfies (3.24) and does not have to be Einstein.

Birkhoff’s theorem holds for two of the subclasses, Class-IIIb and Class-IIIc.

3.4 and a staticity theorem

For generic Class-II and certain Class-III solutions, we have the following local staticity

theorem.

Theorem. Let (M, g) be a six-dimensional pseudoriemannian spacetime whose metric

g satisfies the Gauss-Bonnet equations of motion (2.3) and whose manifold M admits a
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foliation into two-dimensional submanifolds Σ
(2)
(x1,...x4)

and a foliation into four-dimensional

submanifolds H
(4)
(t1,t2) such that:

• the tangent bundles of the leaves TΣ
(2)
(x1,...,x4)

and TH
(4)
(t1,t2)

are orthogonal with respect

to g;

• for all (t1, t2), the four-dimensional induced metric h
(4)
(t1,t2)

on H
(4)
(t1,t2) is conformal to

a given four dimensional metric h(4) with conformal factor depending only on (t1, t2).

If in addition, either

i) 1 + 4Λα 6= 0 and 5 + 12αΛ 6= 0, or

ii) 1 + 4Λα = 0 and h(4) is not an Einstein space, or

iii) 5 + 12αΛ = 0, h(4) is not an Einstein space and R(4) is not constant,

then M admits a locally time-like Killing vector. Furthermore, in case i), h(4) is an Einstein

metric with Ĝ(4) = constant, whereas in cases ii) and iii), h(4) is not Einstein and solves

respectively (3.24) and (3.22).

This is a restatement of the properties of generic Class-II and some Class-III solutions

we studied above, as these are the ones leading to necessarily static solutions. Note that

the above theorem does not restrict the horizon geometry to be spherically symmetric.

We can thus have horizons which are anisotropic as admissible static solutions. It should

also be stressed that this is qualitatively different from the corresponding theorem in five

dimensions, since there the black hole horizon is three-dimensional and its Weyl tensor is

automatically zero. D = 6 is the first case where the Weyl tensor Cαβγδ of the internal

space plays a non-trivial role and can impose constraints. In dimensions D > 6, we

expect a similar situation, although one would be normally required to also consider the

corresponding higher Lovelock densities in such a setup. The theorem of course makes no

claims about the stability of such configurations. As we see, allowed horizons are four-

dimensional Einstein spaces of Euclidean signature, with an added constraint on their

Weyl tensor. Note that, since Θ is non-zero, in the non-compact cases these spaces are not

asymptotically flat, for otherwise they should satisfy Cαβγδ → 0 at four-dimensional infinity.

4 Horizon structure

We now focus on static Class-II solutions and elaborate on the form of the corresponding

potential V (r), (3.18), which determines the occurrence of event horizons. In particular, we

clarify the role of Θ in this case. There exists two branches of solutions, depending on the

sign choice in (3.18): the Einstein branch solutions (-), which tend to Einstein solutions in

the limit α → 0, and the Gauss-Bonnet branch solutions (+), which have been argued to

be unstable [54]. Because of the stability problems associated with the latter, we restrict

– 13 –



J
H
E
P
1
0
(
2
0
0
9
)
0
3
7

ourselves in the following on the Einstein branch, whose potential is given by

V (r) = κ+
r2

12α

(

1 −
√

1 +
12αΛ

5
− 24Θ

α2

r4
+ 24α

M

r5

)

. (4.1)

In the following, we will then take M to be positive, as is required to have a correct

definition of mass in the usual Θ = 0 situation [18]. We should stress that once Θ 6= 0

the proper definition of mass is no longer clear, as the constant Θ changes the spacetime

asymptotics. By continuity we take M > 0, entrusting further study on the meaning of

these charges to later work.

In the BI limit, 5+12αΛ = 0, the only contributions come from the Θ and mass terms.

At large r, the Θ ≥ 0 term becomes dominant, developing a branch cut-type singularity.

Solutions with 1 + 12αΛ
5 = 0 and Θ 6= 0 are therefore singular. The BI case thus falls into

the second family of solutions verifying (2.7) which have to be treated separately.

From the above observation for the BI limit we already see that the Θ > 0 term will

increase the possibility of a branch singularity near the BI limit. We assume for the rest

of this section that 5 + 12αΛ > 0. A branch cut occurs at r = rbc whenever

Q(rbc) =

(

1 +
12αΛ

5

)

r5bc − 24Θα2rbc + 24αM = 0 . (4.2)

When does that actually happen? First, let us consider the simple case whereM is switched

off. Then, provided 5 + 12αΛ > 0, there is always a branch singularity at

rbc =

(

24α2Θ

1 + 12αΛ
5

)
1
4

=: 51/4r0, (4.3)

due to the non-vanishing of Θ. On the other hand, if M is not switched off, there is a

branch-cut iff

αM <
4

5
α2Θr0 , (4.4)

where r0 > 0 is the minimum of Q(r). The constraint (4.4) is the generalization of the

M = 0 result, the inequality on M being trivially satisfied then. Generically, the effect

of the M term will be to decrease rbc, even if its exact expression cannot be computed

analytically in the general case.

To go on, let us turn to the horizon analysis, first by considering the background

solution, with Θ and M switched off (or equivalently for r large enough to make the Θ and

M terms negligible),

V (r) =

(

1 −
√

1 + 12
5 αΛ

)

12α

(

r2 − r2c
)

= 0, r2c = − 12ακ

1 −
√

1 + 12
5 αΛ

, (4.5)

which is defined iff

κΛ > 0, αΛ > − 5

12
. (4.6)
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We obtain,

V (r < rc) > 0 ⇐⇒ Λ > 0,

V (r > rc) > 0 ⇐⇒ Λ < 0,

The solution behaves exacty like 4-dimensional AdS or dS space in GR with effective

cosmological constant,

Λeff =

(

1 −
√

1 + 12
5 αΛ

)

12α
(4.7)

Now, as for the existence of event horizons, following [14] and [19], r = rh is a horizon iff

• rh > rbc

• r2h ≥ −12ακ (trivial if ακ > 0)

• r = rh is a root of P (r) = − Λ
10r

5 + κr3 + α
(

Θ + 6κ2
)

r −M

Whenever Θ = 0, the black holes behave similarly (modulo the branch singularity that

puts some constraints on the smallness of the black hole mass) to their General Relativ-

ity black hole counterparts. Typically, Λ < 0 permits planar and hyperbolic black holes,

Λ > 0 an event and a cosmological horizon, and Λ = 0 a unique event horizon. The key

question we want to answer here is: does Θ 6= 0 introduce novel horizons to the above

black holes, keeping in mind that Θ > 0? To answer this question, we momentarily switch

off the “mass” parameter M and we note that if α < 0, the resulting black hole potential

can be identified with that (tilded quantities) of the five dimensional Boulware and Deser

solution [15] (see also [55]), upon the following identifications

α̃ = 3α, Λ̃ =
3Λ

5
, Θ =

−3M̃

α̃
M = 0 . (4.8)

Thus, we expect that horizons will be formed even if M is set to zero. In that case, P (r)

is a bisquare polynomial and its zeros P (rh > 0) = 0 are easily found:

r2h = − 5

Λ

[

−κ±
√

2αΛ

5
(Θ + sign(αΛ)Θmax)

]

, (4.9)

where
2αΛ

5
(Θ + sign(αΛ)Θmax) > 0, Θmax =

5κ2

2|αΛ|

(

1 +
12αΛ

5

)

. (4.10)

This inequality is always true if αΛ > 0, whereas when αΛ < 0 we need Θ < Θmax. These

horizons, when defined, are always greater than the corresponding branch cut position

rbc (4.3). When ακ < 0, verifying r2h > −12ακ yields

Θ > Θ0, Θ0 = 6κ2

(

1 +
12

5
αΛ

)

. (4.11)

The occurrence of horizons due to the Θ-term is summarized in the following table 1, for

various signs of the cosmological constant and zero mass term. In short, Θ has no effect on
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Λ = 0 Λ > 0 (κ > 0) Λ < 0

Θ ακ > 0 ακ < 0 α > 0 α < 0 κ < 0, α > 0 κ, α > 0 κ > 0, α < 0 κ, α < 0

0 ∅ ∅ C C K ∅ ∅ K

6= 0 ∅ E C C + E E+K ∅ E K

iff Θ0 < Θ iff Θ0 < Θ < Θmax iff Θ0 < Θ

Table 1. Occurrence of horizons, for parameter M = 0, depending on the respective signs of κ

and α. ∅ = no horizons, E = Event horizon, C = Cosmological horizon and K= Killing horizon.

Θ0 = 6κ2(1 + 12

5
αΛ), Θmax = 5Θ0

12|αΛ| .

the advent of horizons if ακ > 0, whereas it will generate a new event horizon if ακ < 0,

for an infinite, bounded from below range of values when αΛ ≥ 0 or for a finite range if

αΛ < 0. It is quite interesting to see that there is a natural separation between these two

cases, specifying clearly the effect of Θ, depending on the respective signs of ακ.

Let us now examine the special case of planar horizons (κ = 0):

• Usually, if Λ = 0, no planar horizons are allowed. Here, there is one at rh = M
αΘ

provided αM > 0.

• For Λ > 0, M = 0, there is a cosmological horizon (V (r > rc) < 0) at rc = 10αΘ
Λ

provided α > 0 (quite differently from the usual GR case).)

• For Λ < 0, M = 0, there is an event horizon (V (r > rh) > 0) at rh = 10 (−α)Θ
(−Λ)

provided α < 0.

If M is not taken to be zero, it is difficult to evaluate quantitatively the impact of

Θ, and, apparently, little interesting information can be gained without resorting to a

numerical study.

5 Horizon geometries in the static case

After providing the general discussion of the theorem and the allowed static solutions, we

proceed to give some concrete examples. As already mentioned, the geometry of the in-

ternal space on the horizon cannot be asymptotically flat due to the non-vanishing Weyl

tensor. Candidate solutions are consequently not going to approximate flat space at in-

finity and we are led to consider geometries of this sort. Two simple examples of such

configurations include an S2 ×S2 geometry, as well as a variation of the Taub-NUT space,

known as Bergman space. Finally, we will consider solutions that may have some interest

for codimension two setups.

5.1 S2 × S2

This four-dimensional space is the product of two 2-spheres, with Euclidean signature and

the metric

ds2 = ρ2
1

(

dθ2
1 + sin2 θ1dφ

2
1

)

+ ρ2
2

(

dθ2
2 + sin2 θ2dφ

2
2

)

, (5.1)
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where we consider the (dimensionless) radii ρ1 and ρ2 of the spheres to be constant. The

entire six-dimensional space has the form

ds2 = −V (r) dt2 +
dr2

V (r)
+ r2ρ2

1

(

dθ2
1 + sin2 θ1dφ

2
1

)

+ r2ρ2
2

(

dθ2
2 + sin2 θ2dφ

2
2

)

, (5.2)

with the potential

V (r) =
R(4)

12
+

r2

12α

(

1 ±
√

1 − 24k2α− 24Θ
α2

r4
+ 24α

M

r5

)

. (5.3)

In order for (5.2) to be a solution to the Gauss-Bonnet equations of motion, we are led to

the condition of equal sphere radii, ρ1 = ρ2. In that case, we have κ = 1
3ρ21

> 0, Θ = 4
3ρ41

.

Since we want to look at the possible creation of an event horizon by Θ if M = 0, it suffices

to check the case α < 0 for all values and signs of the cosmological constant: table 1 clearly

shows that such a creation only occurs as ακ < 0, that is α < 0 in our case. If Λ = 0 or

Λ < 0, the constraint Θ0 < Θ implies

0 ≤ αΛ <
5

12
, (5.4)

which is trivially satisfied if Λ = 0 and yields a minimum value for negative cosmological

constant, Λmin = 5
12α < 0. On the other hand, if Λ > 0, the constraint Θ < Θmax (necessary

to have any horizon at all) implies

− 5

36
< αΛ < 0, (5.5)

This gives this time a maximum value for Λ, Λmax = − 5
36α > 0, which more stringent

constraint than the one imposed to have a properly-defined background, 5 + 12αΛ > 0.

5.2 Bergman space

The Bergman space is a homogenous but non-isotropic space which can be derived as a

special case of the anti-deSitter Taub-NUT vacuum [56, 57]. The ordinary Taub-NUT

metric5 can be written as

ds2 = W (ρ)
(

dτ2 + 2n cos θdφ
)2

+
dρ2

W (ρ)
+
(

ρ2 − n2
) (

dθ2 + sin2 θdφ2
)

, (5.6)

with the potential W (ρ) = ρ−n
ρ+n . The Euclidean time coordinate has a period of 8πn.

Here, n is what is usually called the “nut” parameter. It has dimensions of mass−1.

Mathematically, we define a nut as a zero-dimensional (point-like) space where the Killing

5Since we consider the horizon geometry to carry a Euclidean signature, in this section all references

to known metrics implicitly or explicitly assume a Euclidean version of them. These metrics are usually

referred to in literature as gravitational instantons, since they represent solutions to Einstein’s equations in

Euclidean space with finite actions.
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vector generating the U(1) Euclidean time isometry6 vanishes. The nut is thus a fixed-

point of the Euclidean time isometry. The Killing vector generating the isometry is in

the case of Taub-NUT K = ∂
∂τ . A fixed-point occurs where K = 0, or equivalently,

|K|2 = gµνK
µKν = W (ρ) = 0. Zeros of the Taub-NUT potential are then identified as

positions of nuts. For the given potential, this occurs at ρ = n. We see that, at this

position, the factor ρ2 − n2 in front of the 2-sphere part of the metric is also zero, so

the fixed-point set is really zero-dimensional as we would expect from the definition of a

nut. This should be juxtaposed with the related concept of a “bolt”, as a two-dimensional

fixed-point set. We encounter such sets if the potential vanishes at some position different

than ρ = n, which signifies the position of a two-dimensional sphere. In that sense, bolts

are similar to black hole horizons, since they too are examples of such two-dimensional

fixed-point sets for the Euclidean time isometry, although without a nut parameter. To

have a regular solution for (5.6), we only consider the range ρ ≥ n.

In order to make contact with the parametrizations used for the description of the

Bergman metric, we introduced the SU(2) one-forms to parametrize the 3-sphere

σ1 =
1

2
(cosψdθ + sinψ sin θdφ) ,

σ2 =
1

2
(− sinψdθ + cosψ sin θdφ) ,

σ3 =
1

2
(dψ + cos θdφ) .

These satisfy the cyclic relations dσ1 = −2σ2 ∧ σ3 etc. The angles θ, φ, ψ vary in the

ranges 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π. The choice of parameters has to do with

the asymptotic behavior of metric at infinity (r → 0). There, the metric three remaining

coordinates (angular and time) are combined to give a 3-sphere, which we parametrize using

θ, φ and ψ. We say that the metric is asymptotically locally flat, or ALF. This should

be contrasted with the usual asymptotically flat (AF) metrics, where the corresponding

boundary geometry at infinity is a direct product space S1 × S2, instead of S3. For the

Taub-NUT space, the time coordinate indices a non-trivial fibration of S3.

Using the SU(2) one-forms, and setting τ = 2nψ, we can eliminate the angular and

time coordinates of the metric (5.6) in favor of the one-forms. For the radial coordinate, we

make the successive redefinitions ρ → ρ+ n, (so that ρ starts at ρ = 0) and then ρ → ρ2

2n .

The Taub-NUT metric can thus be rewritten as

ds2 = 4
(

1 − µ2ρ2
) [

dρ2 + ρ2
(

σ2
1 + σ2

2

)]

+
4ρ2

1 − µ2ρ2
σ2

3 , (5.7)

6The presence of this isometry is just a mathematical restatement of the property of the Taub-NUT

solution being a static spacetime. In the case of Lorentzian Taub-NUT, the Killing vector shows the

direction in spacetime (meaning, time t) towards which the metric remains unchanged. The isometry

generated is thus a non-compact, one-parameter group of translations, while the parameter manifold is

isomorphic to R1. Once we Wick-rotate to imaginary time, t → iτ , Euclidean time τ becomes periodic and

the parameter manifold is now S1. The isometry, now generating rotations on the circle charactering the τ

dimension turns into a U(1).
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where µ2 = 1
4n2 . The metric (5.7) can be considered to be a special case of the more general

Anti-deSitter Taub-NUT, of the form

ds2 =
4

(1 − k2ρ2)2

[

1 − µ2ρ2

1 − k2µ2ρ4
dρ2 + ρ2

(

1 − µ2ρ2
) (

σ2
1 + σ2

2

)

+ ρ2 1 − k2µ2ρ4

1 − µ2ρ2
σ2

3

]

. (5.8)

Note that the mass parameter µ is now defined in terms of k and the nut parameter by

µ2 = k2− 1
4n2 . This is a Taub-NUT space with a cosmological constant −3k2. We consider

the space of radial coordinates where the metric is non-singular, i.e. 0 ≤ ρ ≤ 1/k, so that

ρh = 1/k is the horizon of the AdS space. For vanishing cosmological constant (k = 0),

this reduces to the ordinary Taub-NUT geometry of (5.7), while for µ = 0, the AdS4 is

recovered. AdS Taub-NUT has in general an SU(2) × U(1) isometry group, which can

however be enhanced for special parameter values.

None of the above mentioned spaces is a good candidate solution for the horizon, since

they do not possess a constant Θ. For AdS Taub-NUT, we obtain

Θ = 6µ4

(

1 − k2ρ2
)6

(1 − µ2ρ2)6
, (5.9)

which only becomes constant at radial infinity (past the AdS horizon), Θ ∼ 6k12

µ8 . Setting

k = 0 in this relation we obtain the corresponding value for the ordinary Taub-NUT,

Θ = 6µ2

(1−µ2ρ2)6
. The space is asymptotically (locally) flat, so Θ ∼ 0 at infinity.

Let us now consider the case where µ = k. We then recover the Bergman metric

ds2 =
4

(1 − k2ρ2)2

[

1

1 + k2ρ2
dρ2 + ρ2

(

1 − k2ρ2
) (

σ2
1 + σ2

2

)

+ ρ2
(

1 + k2ρ2
)

σ2
3

]

. (5.10)

It describes the coset space SU(2, 1)/U(2), which is a Kähler-Einstein manifold with Kähler

potential

K(z1, z̄1, z2, z̄2) = 1 − z1z̄1 − z2z̄2 , for z1z̄1 + z2z̄2 < 1, (5.11)

and the topology of the open ball in C
2. Setting z1 = kξ cos(θ/2)ei(φ+ψ)/2 and z2 =

kξ sin(θ/2)ei(φ−ψ)/2 the metric gαβ̄ = −∂α∂β̄ lnK1/k2
reproduces exactly (5.10) after a

change of coordinate ξ2 = 2ρ2/(1 + k2ρ2). The Bergman metric (5.10) has an isometry

group of SU(2, 1). In practice, the choice µ = k corresponds to infinite “squashing” of the

3-sphere at the boundary ρ→ 1/k, such that only a one-dimensional circle remains intact

at spatial infinity. By comparing the terms multiplying σ2
1 + σ2

2 (2-sphere) and σ2
3, we see

that as we approach the boundary, the σ2
3 part blows up faster and becomes dominant.

The space has this circle as its conformal boundary. It is now possible to see from the

expression (5.9) for Θ in AdS Taub-NUT that the Bergman space has Θ = 6k4 and is thus

a suitable horizon solution. Substituting (5.10) as the metric of the internal space h
(4)
µν , we

verify that it is a solution to the equations of motion. To do so, we first rescale the radial

coordinate as ρ → ρ/l, with l having dimensions of mass−1 in order to make the metric

dimensionless. As a result, we identify the dimensionless curvature scale k → kl. The bulk

potential of the solution is then given by

V (r) = −k2 +
r2

12α

(

1 ±
√

1 +
12

5
αΛ − 144k2

α2

r4
+ 24α

M

r5

)

. (5.12)
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Bergman space exists in the case κ = −k2 < 0, Θ = 6k4. According to table 1, when M is

set to zero, the only case where a horizon may originate from the Θ-term is when α > 0

and Λ, the bulk cosmological constant, is negative. Then, the condition Θ0 < Θ < Θmax

needs to be verified in order to have a new event horizon, on top of the pre-existing Killing

horizon. The left part of the inequality yields α > 0 and is thus trivially satisfied, and the

right half gives a minimum value for Λ,

Λmin = − 5

24α
< Λ < 0. (5.13)

This is a more stringent constraint than the one imposed to have a properly-defined back-

ground, 5+12αΛ > 0, which yields a lower minimum value. If this is verified, the Bergman

space with M = 0, Θ 6= 0 allows an event horizon.

We should note at this point that previous studies have shown the Bergman geometry

to be unstable, both perturbatively and non-perturbatively, in the context of ordinary

General Relativity [58]. It is not known whether this property persists also in Gauss-

Bonnet theory.

As we mentioned above, apart from zero-dimensional fixed-points of the Euclidean

time isometry (nuts), one could also consider spaces exhibiting the two-dimensional variety

(bolts). This is known and appropriately termed as the Taub-Bolt space and is very similar

to the already discussed Taub-NUT. Indeed, the metric for Taub-Bolt is the same as (5.6)

and (5.7), with the only distinction that the potential is now

W (ρ) =
ρ2 − 2mρ+ n2 + k2

(

ρ4 − 6n2ρ2 − 3n4
)

ρ2 − n2
. (5.14)

The position at which W (ρ) = 0 is no longer ρ = n and consequently the term ρ2 − n2

multiplying the 2-sphere does not vanish at this point, providing the two-dimensional bolt.

Imposing regularity of the potential at the position of the bolt ρ = ρb we end up with the

following prescriptions

m =
ρ2
b + n2

2ρb
+
k2

2

(

ρ3
b − 6n2ρb − 3

n4

ρb

)

(5.15)

ρb± =
1

12k2n

(

1 ±
√

1 − 48k2n2 + 144k4n4
)

(5.16)

Is it possible to take the Bergman limit for the Taub-Bolt space like we did with Taub-

NUT? To do so, we should retrace our steps and first recast the metric into the Pedersen

form. Unfortunately, this is now non-trivial due to the more involved potential and bolt

radius. We can however consider the limit µ = k without deriving the full metric for

arbitrary µ. Inspecting the definition of µ for Taub-NUT, we see that µ = k corresponds

to the limit n → ∞. To find the form of the metric in that limit, we first make the shift

ρ→ ρ+ ρb. The potential can then be written as

W (ρ) =
ρ
(

C0 + C1ρ+ C2ρ
2 + C3ρ

3
)

(ρ+ ρb + n)(ρ+ ρb − n)
(5.17)
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with the parameters

C0 =

(

ρ2
b − n2

) (

1 + 3k2
(

ρ2
b − n2

))

ρb
∼

n→∞
0 , (5.18)

C1 = 1 + 6k2
(

ρ2
b − n2

) ∼
n→∞

1 , (5.19)

C2 = 4k2ρb ∼
n→∞

4k2n , (5.20)

C3 = k2 . (5.21)

In determining the limit of parameters we used the fact that ρb ∼
n→∞

n. We then set ρ →
ρ2

2n(1−k2ρ2)
and keeping only finite terms in the metric, we recover the Bergman space (5.10).

Taub-Bolt has thus the same limit as Taub-NUT for infinite nut parameter.

We would like to conclude this section by noting that, taking k purely imaginary

in (5.10), we end up with the Fubini-Study metric on CP
2 and that the latter also consti-

tutes a possible horizon metric for a static Lovelock black hole.

5.3 Six-dimensional black strings

Let us now turn to some special solutions which resemble black string metrics. Here we

assume that the “horizon” surface is of Lorentzian signature. Both solutions presented in

this section admit an extra axially symmetric Killing vector (see also [30]).

5.3.1 Six-dimensional warped Born-Infeld black strings

Throughout this section, the BI limit is assumed, that is we set 5 + 12Λα = 0. In this

case, we would like to discuss a particular subclass of Class-II solutions, which appears

to contain black string solutions as well as solutions that may be relevant to codimension

two braneworld cosmology. They correspond to the overdetermined solutions (3.21)–(3.23).

After Wick rotation, these solutions can be rewritten as

ds2 = r2h(4)
µν dx

µdxν +
dr2

ρ
2 + r2

12α

+

(

ρ

2
+

r2

12α

)

dθ2 (5.22)

where the four-dimensional Lorentzian metric h
(4)
µν needs not be Einstein and is only subject

to equation (3.22) that we reproduce here

ρ =
R(4)

6
± 1

6

√

R(4)2 − 6Ĝ(4) . (5.23)

In order to solve (5.23), we assume, for example, that h
(4)
µν is of the form

ds2(4) = −f(ξ)dt2 +
dξ2

f(ξ)
+ ξ2dΩ2

II,k , (5.24)

where dΩ2
II,k denotes the two-dimensional metric with constant curvature on the sphere,

the plane or the hyperbolic space, depending on whether k = 1, 0 or −1 respectively. h
(4)
µν
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therefore has spherical, planar or hyperbolic symmetry, although it is certainly not the

most general ansatz with these symmetries. Now, it follows from (5.23) that

f(ξ) = k − ρ

2
ξ2
(

1 ±
√

c1
ξ3

+
c2
ξ4

)

, (5.25)

where c1 and c2 are integration constants. The corresponding four dimensional metric

h
(4)
µν is not Einsein and distributional sources at r2 = −6αρ are therefore expected from

the matching conditions. These four dimensional metrics h
(4)
µν do not correspond to any

known GR solutions at large distance and are similar to the unphysical spherical solutions

of Hořava gravity [59] in the case of detailed balance [60]. Although BI and Hořava the-

ory are radically different, both theories have been shown to suffer from strong coupling

problems, [54, 61].

The total space is, in the end, a warped product between a constant curvature two-

space and a four-dimensional lorentzian space. This particular black string solution has

been first discussed in [62].

5.3.2 Six-dimensional straight black strings

We finally consider the special case of Class-III solutions, with a time-like local Killing

vector and an undetermined horizon geometry:

ds2 =
2

Λz̄2

(

−dt2 + dz2
)

+ β2hµνdx
µdxν . (5.26)

The only constraint on the internal geometry comes from the scalar equation (3.24), i.e.

0 = −2Λβ4 + β2R(4) + αĜ(4) , (5.27)

where β is a constant “warp factor” and 1 + 4αΛ = 0. As in the previous section, we

consider a Wick rotated version in which the internal space is lorentzian and we assume

the same particular ansatz for h
(4)
µν , (5.24). It then follows from (5.27) that

ds2(4) = −f(ρ)dt2 +
dρ2

f(ρ)
+ ρ2dΩk

II (5.28)

f(ρ) = k +
β2ρ2

4α

[

1 ±
√

2

3β2
+

32αµ

3β4ρ3
− 16αq

3β4ρ4

]

, (5.29)

where µ and q are both integration constants. The have been rescaled so that the met-

ric resembles the Reissner-Nordström solution far from the source in the minus branch,

provided β2 is set to two-thirds.

The six-dimensional metric finally reads

ds2 =
2

Λz2

(

dθ2 + dz2
)

+ β2

[

−f(ρ)dt2 +
dρ2

f(ρ)
+ ρ2dΩk

II

]

(5.30)

and is an unwarped product between a constant curvature two-dimensional space and a

four-dimensional unwarped brane admitting Schwarzschild as a limit in one of the branches

of solutions, with β2 = 2
3 . This coincides with the Kaluza-Klein black hole reported

in [22], provided β2 = 1. We should emphasize here that, as an equation for h
(4)
µν , (5.27) is

underdetermined. In particular, had we considered a generic spherically symmetric ansatz,

we would have had a free metric function appearing in the internal geometry.
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6 Conclusions

We have found the general solution7 to the metric (2.8) and have investigated generaliza-

tions of Birkhoff’s theorem in six-dimensional Einstein-Gauss-Bonnet theory (or Lovelock

theory). Our analysis significantly generalizes previous treatments in five dimensions and

6 dimensions, or cases where spherical symmetry of the horizon is imposed from the be-

ginning. Furthermore, the analysis undertaken here agrees with [50] where staticity is

assumed. Permitting the Weyl tensor of the internal space in the equations of motion

through the combination CαβγµCαβγν = Θδµν leads to severe restrictions. We analyzed the

way this new contribution modifies the available solutions. We distinguish three categories.

The so called Class-I leads both to an underdetermined system of equations and the

application of a specific condition between the parameters of the theory. We find two

possibilities:

• the internal space is a constant curvature space (with Θ = 0) and one of the metric

functions in transverse space is undetermined (Ia),

• the internal space is not necessarily Einstein (and generically Θ 6= 0) and all metric

functions can be determined (Ib).

The possibility of an underdetermined system of equations once a particular choice of

parameters is used seems to hint the presence of an increased “symmetry” in such a case.

Class-I solutions do not obey some variant of Birkhoff’s theorem, i.e. static solutions are

not unique in this context. Class-II solutions on the other hand give rise to a generalized

Birkhoff’s theorem; static solutions are unique, provided some conditions related to the

structure of the internal space are satisfied:

• the internal space is Einstein with a constant 4-dimensional Gauss-Bonnet charge

and constant curvature (IIa),

• the internal space is not necessarily Einstein but is constrained by a scalar equa-

tion (3.22) and the BI condition holds (IIb).

The Class-III case corresponds to unwarped metrics, and Birkhoff’s theorem also holds

in some specific subcases:

• 1 + 4αΛ 6= 0 and the internal space is Einstein (IIIb), or

• 1 + 4αΛ = 0, the internal space is not Einstein and can or not be constrained by a

scalar equation (3.24) (IIIc).

A third case exists where Birkhoff’s theorem does not hold, when both the horizon is

Einstein and the condition 1 + 4αΛ = 0 is applied (IIIa).

We summarize our results in table 2.

For the Class-II solutions, for which the generalized staticity theorem holds, we studied

some examples of non-trivial horizon geometries. The spaces we consider are in general

7The case of Class(Ib) still demands the resolution of (3.8).
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Ia Ib IIa IIb IIIa IIIb IIIc

Birkhoff ∅ ∅
√ √

∅
√ √

Einstein
√

∅
√

∅, (3.22)
√ √

∅, (3.24)

Θ 0 ≥ 0 ≥ 0 ≥ 0 > 0 ≥ 0 ≥ 0

Fine-tuning BI BI ∅ BI 1 + 4αΛ = 0 ∅ 1 + 4αΛ = 0

Table 2. Classes of solutions and their characteristics. Einstein: horizon is an Einstein space. BI :

5 + 12αΛ = 0. Θ
.
= 1

4
CabcdCabcd.

anisotropic, such as the S2 ×S2 product space and the Euclidean Bergman geometry. The

latter can be considered as the appropriate limit of either an AdS Taub-NUT or Taub-Bolt

space with infinite nut charge. Bergman space has the squashed 3-sphere (Berger sphere)

as its conformal boundary and is thus anisotropic.

It would be interesting to investigate further cases of suitable horizon geometries satis-

fying the requirements of Birkhoff’s theorem and also to study the general conditions under

which a class of such solutions may arise. A consistent generalization to higher dimensions

would require the inclusion of higher order Lovelock densities in the action. In this case

one could consider as possible candidate horizon solutions the Bohm metrics [37], which

are known to be admissible if only the Gauss-Bonnet term is taken into account. Appar-

ently, higher-order curvature invariants other than Θ would be involved in distinguishing

compatible horizon metrics, potentially requiring a more systematic classification.

The most interesting departure from General Relativity arises due to the non-vanishing

of the constant Θ. The latter appears, at the level of the static black hole potential, as a

novel integration constant or “charge” and is directly related to the Gauss-Bonnet scalar

of the 4-dimensional horizon, a quantity whose integral yields a topological invariant: the

relevant Euler-Poincaré characteristic. We saw that the presence of this constant imposes

particular and non-trivial asymptotic conditions and certainly a particular topology. Since

it can even give rise to novel horizons, it would be interesting to investigate whether this

constant can be interpreted as the conserved charge of some Killing symmetry of spacetime

and what its physical meaning actually is.
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